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We derive general equations for the nonlinear relaxation time of Brownian diffusion in randomly switching
potential with a sink. For piece-wise linear dichotomously fluctuating potential with metastable state, we obtain
the exact average lifetime as a function of the potential parameters and the noise intensity. Our result is valid
for arbitrary white noise intensity and for arbitrary fluctuation rate of the potential. We find noise enhanced
stability phenomenon in the system investigated: The average lifetime of the metastable state is greater than the
time obtained in the absence of additive white noise. We obtain the parameter region of the fluctuating potential
where the effect can be observed. The system investigated also exhibits a maximum of the lifetime as a
function of the fluctuation rate of the potential.
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I. INTRODUCTION

Activated-escape in systems with metastable states under-
lies many physical, chemical, and biological problems. Ex-
amples are crystal growth, tunnel diode, lasers, quantum liq-
uids, spin systems, protein folding, and polymer physics
[1,2]. The most interesting and stubborn case of metastable
state is one described by time dependent potential, which
fluctuates on a characteristic time scale that may vary over a
large range. In particular, the metastable states with fluctuat-
ing barriers are common to chemical and biological models
[3–5], and to a wide range of physical problems, such as
nonequilibrium transport models, molecular dissociation in
strongly coupled chemical systems[6], ratchet models for
the action of molecular motors[7], noise in microstructures
and generation process of carrier traps in semiconductors
[8–10]. The escape from metastable state with fluctuating or
randomly switching barrier was studied in the past mainly by
well known mean first passage time(MFPT) technique. In
Refs. [11,12] exact results for the MFPT of escape process
over fluctuating barrier that switches between two configu-
rations have been obtained. However, the MFPT method re-
quires the implication of absorbing boundary in the system,
and it does not take into account the inverse probability cur-
rent through this boundary. The nonlinear relaxation time
(NLRT) method is devoid of this disadvantage[13]. Never-
theless the theory for the NLRT is not well developed and
the equations for the NLRT are unknown for the case of time
varying potential.

In the present paper we derive general equations for the
NLRT for potentials randomly switching between two arbi-
trary configurations with a sink. We find the exact solution of
these equations for a piece-wise linear potential flipping be-
tween unstable and metastable configurations, for arbitrary
white noise intensity and fluctuation rate of the potential.
Analyzing this exact result we focus on the noise enhanced
stability (NES) effect, which implies that the system remains
in the metastable state for a longer time than in the absence
of additive white noise, and the lifetime of the metastable
state has a maximum at some noise intensity. This effect,

which cannot be described by Kramers-like behavior, was
observed and investigated theoretically and experimentally
in various physical systems and mainly concerning MFPT in
periodically or randomly driven metastable states
[3,9,14–24]. In these papers the nonmonotonic behavior of
the average escape time was observed:(i) In physical sys-
tems, like tunnel diode[14], and Josephson junction[18],
where the influence of thermal fluctuations on the supercon-
ductive state lifetime and the turn-on delay time for a single
Josephson element with high damping was investigated;(ii )
in chemical systems, like the one-dimensional return map of
the Belousov-Zhabotinsky reaction, by investigating the be-
havior of the length of the laminar region as a function of the
noise intensity[22], and(iii ) in biologically motivated mod-
els, such that investigated in Ref.[3], where the overdamped
motion of a Brownian particle moving in an asymmetric
fluctuating potential shows noise induced stability.

Here we study the NES phenomenon for the NLRT in
randomly switching metastable state, and we obtain analyti-
cally the region of system parameters, where this effect takes
place. We find also resonant activation phenomenon by in-
vestigating the mean lifetime as a function of switchings
mean rate. Moreover, we find that the NLRT exhibits a maxi-
mum as a function of barrier switching rate. This new
resonant-like phenomenon is related to the NES effect[9,14].

The paper is organized as follows. In the second section
we derive the general equations for the nonlinear relaxation
time of Brownian diffusion in randomly switching potential
with a metastable state. In the third section we analytically
derive the mean lifetime for piece-wise linear potential. In
the next section we obtain the condition to observe the NES
phenomenon and investigate the behavior of the mean life-
time as a function of switchings mean rate. In the final sec-
tion we draw the conclusions.

II. GENERAL EQUATIONS

We consider the one-dimensional overdamped Brownian
motion in switching potential profile
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dx

dt
= −

] Fsx,td
] x

+ jstd,

Fsx,td = Usxd + Vsxdhstd. s1d

Here xstd is the Brownian particle displacement,jstd is the
white Gaussian noise with zero mean and correlation func-
tion kjstdjst+tdl=2Ddstd. The potentialFsx,td is the sum of
two terms: The fixed potentialUsxd and the randomly
switching termVsxdhstd. The variablehstd is the Markovian
dichotomous noise, which takes the values ±1 with the mean
flipping rate n. If we invoke the following expression for
probability density in terms of the average

Wsx,td = kd„x − xstd…l s2d

and introduce auxiliary functionQsx,td

Qsx,td = khstdd„x − xstd…l, s3d

we obtain the next closed set of equations(see[25,26], and
the Appendix)

] W

] t
=

]

] x
fU8sxdW+ V8sxdQg + D

]2W

] x2 ,

] Q

] t
= − 2nQ +

]

] x
fU8sxdQ + V8sxdWg + D

]2Q

] x2 . s4d

Let x=x0 be the initial position of Brownian particles. Then

Wsx,0d = dsx − x0d, s5d

and Wsx,td becomes the conditional probability density
Wsx,t ux0,0d. Sincehs0d is a deterministic value, the initial
condition for the functionQsx,td is [see Eqs.(3) and (5)]

Qsx,0d = Wsx,0dhs0d = ± dsx − x0d. s6d

Let us consider the potential profilesUsxd±Vsxd with a wall
at x→−` and a sink atx→ +` (see Fig. 1). The potential
profile Usxd+Vsxd corresponds to a metastable state, and
Usxd−Vsxd corresponds to an unstable one.

Thus, we investigate the system with randomly switching
metastable state.

The nonlinear relaxation time(NLRT) for the state lo-
cated in the intervalsL1,L2d is defined as follows[13]

tsx0d =E
0

`

dtE
L1

L2

Wsx,tux0,0ddx, s7d

wherex0P sL1,L2d. The NLRT is also interpreted as mean
lifetime of Brownian particles in the intervalsL1,L2d or av-
erage residence time, because, in accordance with Eqs.(2)
and (7) can be rewritten as conditional time average

tsx0d =KE
0

`

u„xstd − L1…u„L2 − xstd…udtuxs0d = x0L ,

whereusxd is the step function.
Let us rewrite the definition(7) in the form

tsx0d =E
L1

L2

Ysx,x0,0ddx, s8d

where Ysx,x0,sd is the Laplace transform of conditional
probability densityWsx,t ux0,0d. After Laplace transforming
Eqs. (4), with initial conditions (5) and (6), we obtain the
following closed set of ordinary differential equations

DY9 + fU8sxdY + V8sxdRg8 − sY= − dsx − x0d,

DR9 + fU8sxdR+ V8sxdYg8 − ss+ 2ndR= 7 dsx − x0d,

s9d

whereRsx,x0,sd is the Laplace transform of auxiliary func-
tion Qsx,td, defined by Eq.(6). Using the method proposed
in Ref. [27], we expand the functionssYsx,x0,sd and
sRsx,x0,sd in power series ins

sYsx,x0,sd = Z0sx,x0d + sZ1sx,x0d + ¯

sRsx,x0,sd = R0sx,x0d + sR1sx,x0d + ¯ . s10d

Since all Brownian particles move to the sink located at the
point x= +` (see Fig. 1) we have zero stationary probability
distribution, i.e.,

lim
t→`

Wsx,tux0,0d = lim
s→0

sYsx,x0,sd = 0.

As a consequence, in expansions(10) Z0sx,x0d=0, R0sx,x0d
=0, and the definition(8) becomes

tsx0d =E
L1

L2

Z1sx,x0ddx. s11d

Substituting the expansions(10) in Eqs.(9) and equating the
terms withouts, we obtain the following set of equations for
the functionsZ1sx,x0d andR1sx,x0d

DZ19 + fU8sxdZ1 + V8sxdR1g8 = − dsx − x0d,

DR19 + fU8R1 + V8Z1g8 − 2nR1 = 7 dsx − x0d. s12d

Because of the reflecting boundary atx=−`, the probabil-
ity flow equals zero at this point, and from Eqs.(4) we have

FD
] W

] x
+ U8sxdW+ V8sxdQG

x=−`

= 0,

FIG. 1. Switching potential with metastable state.
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FD
] Q

] x
+ U8sxdQ + V8sxdWG

x=−`

= 0. s13d

Making the Laplace transform of Eqs.(13) and substituting
the expansions(10), we obtain the following conditions for
the functionsZ1sx,x0d andR1sx,x0d

fDZ18 + U8sxdZ1 + V8sxdR1gx=−` = 0,

fDR18 + U8sxdR1 + V8sxdZ1gx=−` = 0. s14d

By integrating the system(12) from −` to x, with boundary
conditions (14), we obtain the following closed set of
integro-differential equations for the functionsZ1sx,x0d and
R1sx,x0d

DZ18 + U8sxdZ1 + V8sxdR1 = − usx − x0d,

DR18 + U8sxdR1 + V8sxdZ1 = 2nE
−`

x

R1dy7 usx − x0d.

s15d

These general equations allow to calculate the NLRT for
potential profiles above-defined. We may consider two mean
lifetimes t+sx0d andt−sx0d, depending on the initial configu-
ration of the randomly switching potential profileFsx,0d:
Usxd+Vsxd or Usxd−Vsxd. The NLRT(11) is equal tot+sx0d,
when we take the sign “−” in the second equation of system
(15), and vice versa fort−sx0d.

III. LIFETIMES FOR PIECE-WISE LINEAR POTENTIAL

Let us consider a piece-wise linear potential profile(see
Fig. 2) with Vsxd=ax (x.0, 0,a,k) and

Usxd = 5+ `, x , 0

0, 0 ø x ø L

ksL − xd, x . L

. s16d

Hereafter we shall analyze the average residence timet−s0d
from the intervalsL1=0,L2=bd with b.L, which is finite in
deterministic case. We consider the initial position of all
Brownian particles at the origin, i.e.,x0=0. The potential
profile Usxd+ax corresponds to metastable state andUsxd
−ax corresponds to unstable one, as indicated in Fig. 2. After
substituting the potential(16) andVsxd=ax in Eqs.(15) and
choosing the sign “+” we arrive at

DZ18 − kusx − LdZ1 + aR1 = − 1,

DR18 − kusx − LdR1 + aZ1 = 1 + 2nE
0

x

R1dy. s17d

We solve the set of differential equations(17) in the regions
0,x,L and x.L separately, and then use the continuity
conditions at the pointx=L

Z1uL−0 = Z1uL+0, R1uL−0 = R1uL+0. s18d

For 0,x,L, the solutions of Eqs.(17) read

Z1sxd = c1Scoshgx +
2nD

a2 D + c2sinh gx +
1

a
−

2nx

g2D2 ,

R1sxd = −
gD

a
sc1sinh gx + c2coshgxd −

a

g2D2 , s19d

whereZ1sxd;Z1sx,0d, R1sxd;R1sx,0d and

g =Î a2

D2 +
2n

D
. s20d

The finite solutions of Eqs.(17) in the intervalsL , +`d are

Z1sxd = c3e
msx−Ld +

1

k
,

R1sxd =
c3sk − mDd

a
emsx−Ld, s21d

where

m =
2k

3D
F1 +Î1 + 3

g2D2

k2 cosSu + 2p

3
DG ,

cosu = −
1 + 9snD − a2d/k2

f1 + 3g2D2/k2g3/2 , s22d

is the negative root of the following cubic equation

lSl −
k

D
D2

− g2l +
2nk

D2 = 0. s23d

Substituting the solutions(19) and(21) in the continuity con-
ditions (18) and in the second equation(17), we obtain, after
rearrangements, the following compact system of algebraic
equations for unknown constantsc1,c2,c3

c1 coshgL + c2 sinh gL + c3S 2nk

mG2 − 1D = 0,

c1 sinh gL + c2 coshgL + c3
k − mD

G
= −

a2

G3 ,

c1 − c3
ka2

mG2D
=

ah

2nD
, s24d

where

G = gD,

FIG. 2. Switching piece-wise linear potential.
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h =
a

k
+

2naL

G2 − 1. s25d

The solutions of Eqs.(24) are

c1 =
ah

2nD
+

a3ks2nDa sinh gL − hG3d
2nG3Dfa2k + Ds2nk − mG2d coshgL + mGDsmD − kd sinh gLg

,

c2 =
ahsmG2 − 2nkds2nDa + hG3sinh gLd + fhmG4sk − mDd − 2na3kgcoshgLj

2nG3fa2k + Ds2nk − mG2dcoshgL + mGDsmD − kdsinh gLg
,

c3 =
mas2nDa sinh gL − hG3d

2nGfa2k + Ds2nk − mG2dcoshgL + mGDsmD − kdsinh gLg
. s26d

Substituting the expressions(19) and(21) of the functionZ1sxd in Eq. (11), and using Eqs.(26), we obtain finally the following
result for mean lifetime

t−s0d =
b

k
+

nL2

G2 +
a

2nG4SDGh2nafG2semsb−Ld − 1d + 2nkLg + hG2s2nk − mG2djsinh gL − 2nDasa2k + mG2D − 2nkDd
a2k + Ds2nk − mG2dcoshgL + mGDsmD − kdsinh gL

+
DfhmG4smD − kd + 2nasa2k + mG2D − 2nkDdgcoshgL − hG4fG2semsb−Ld − 1d + 2nkL + mDsmD − kdg

a2k + Ds2nk − mG2dcoshgL + mGDsmD − kdsinh gL
D . s27d

Equation(27) is exact, and was derived without any as-
sumptions on the white noise intensityD and on the mean
rate of flippingsn.

IV. CONDITION TO OBSERVE NOISE ENHANCED
STABILITY (NES)

Because of the complicated expression(27) of the mean
lifetime, we analyze the limiting cases of very large and very
small noise intensities. Using the approximate estimations
for small parametersg andm in the limit D→`

g .Î2n

D
S1 +

a2

4nD
D, m . −Î2n

D S1 −
k

2Î2nD
D ,

obtained from Eqs.(20) and (22), we find from Eq.(27)

t−s0d =
b

k
+

L2

2D
F1 −

bqs1 − qd
vL

G + oS 1

D
D . s28d

Herev=nL /k andq=a/k are dimensionless parameters. The
parameterq quantifies the degree of potential flatness after
the pointL (see Fig. 2). Under very large noise intensityD,
Brownian particles “do not see” the fine structure of potential
profile and move as in the fixed potential −kx. Therefore, the
NLRT decreases with noise intensity, tending to the value
b/k as follows from Eq.(28).

The NES phenomenon should be searched in opposite
limiting case of very slow diffusionsD→0d [9,14,24]. The
approximate expressions, obtained in this limit, for param-
etersg ,G andm are

g .
a

D
S1 +

nD

a2 D, G . aS1 +
nD

a2 D ,

m . −
2v

Ls1 − q2dF1 −
2vDs1 + q2d
kLs1 − q2d2 G . s29d

Substituting Eqs.(29) into Eq. (27), and retaining the terms
up to first order inD, we obtain the following expression for
NLRT at small noise intensity

t−s0d = t0 +
D

a2 fsq,v,sd + osDd. s30d

Here

fsq,v,sd =
3q2 + 4q − 5

2s1 − q2d
+ 2v

3q2 + q − 3

qs1 − q2d
−

2v2

q2

+ se−s q3s1 + q2d
s1 + qds1 − q2d

+ s1 − e−sd
qs1 − q2 − 2q3d

2s1 − q2d
s31d

and

t0 =
2L

a
+

nL2

a2 +
b − L

k
−

qs1 − qd
2n

s1 − e−sd, s32d

is the mean lifetime in the absence of white Gaussian noise
sD=0d. In Eqs.(31) and (32) new dimensionless parameter

s=
2vsb/L − 1d

1 − q2 ,

is introduced.
For very slow switchingsn→0, we find from Eq.(32)
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t0sn → 0d =
2L

a
+

b − L

k + a
, s33d

which is different from the deterministic time

td = t0sn = 0d =
L

a
+

b − L

k + a
. s34d

Difference between the results(33) and(34) is due to a non-
zero probability of one switching within the deterministic
time intervals0,tdd in the casen→0.

The condition to observe the NES effect can be expressed
by the inequality

fsq,v,sd . 0. s35d

Let us analyze the structure of NES region on the plane
sq,vd from Eqs.(31) and (35). At very slow and fast flip-
pings we obtain

q .
Î19 − 2

3
. 0,7863, v → 0

v ,
qs3q2 + q − 3d

1 − q2 , v → `. s36d

In Fig. 3 we show the NES region(shaded area) on the plane
sq,vd for b/L=2, obtained from inequality(35).

The NES effect occurs atq.1, i.e., at very small steep-
nessk−a=ks1−qd of the reverse potential barrier for the
metastable state. For this potential profile, a small noise in-
tensity can return particles into potential well, after they
crossed the pointL. Then Brownian particles stay for long
time in the metastable state. This means that, for a fixed
mean flipping rate, the NES effect increases whenq→1. For
fixed parameterq the effect increases whenv→0, because
Brownian particles have enough time to move back into po-
tential well.

In Fig. 4 we show the plots of the normalized mean life-
time t−s0d /t0, Eq.(27), as a function of the noise intensityD
for three values of the dimensionless mean flipping ratev
=nL /k: 0.01, 0.05, 0.1.

The maximum value of the NLRT and the range of noise
intensity values, where NES effect occurs, increases whenv
decreases.

By using exact Eq.(27) we have also investigated the
behavior of the mean lifetimet−s0d as a function of switch-
ings mean raten. In Fig. 5 we plot this behavior for seven
values of noise intensity.

At very slow flippingssn→0d we obtain

t−s0d . td −
Ds1 − e−aL/Dd

a2s1 + qd
, s37d

i.e., the NLRT of the fixed unstable potentialUsxd−ax.
While for very fast switchingssn→`d we obtain

t−s0d .
b

k
+

L2

2D
, s38d

i.e., the mean lifetime for average potentialUsxd. All limiting
values of the NLRT expressed by Eqs.(37) and (38) are
shown in Fig. 5. At intermediate rates the escape from the
metastable state exhibits a minimum atv=0.1, which is the
signature of resonant activation(RA) phenomenon
[2,4,12,28].

Moreover, in Fig. 5 we observe a new resonant-like be-
havior for the NLRT as a function of mean fluctuation rate of
potential. The NLRT exhibits amaximumbetween the slow

FIG. 3. Shaded area is the parameter region on the planesq,vd
where NES effect can be observed. Herev=snLd /k, q=a/k, and
b=2L.

FIG. 4. Semilogarithmic plot of the normalized mean lifetime
t−s0d /t0 vs the white noise intensityD for three values of the di-
mensionless mean flipping ratev=nL /k: 0.1 (curve 1), 0.05(curve
2), 0.01 (curve 3). Parameters areL=1, k=1, b=2, anda=0.995.

FIG. 5. Semilogarithmic plot of the mean lifetimet−s0d vs the
dimensionless mean flipping ratev=nL /k for seven noise intensity
values. Specifically from top to bottom on the right side of the
figure:D=0.03, 0.05, 0.07, 0.09, 0.15, 0.25, 0.35. The other param-
eters are the same as in Fig. 4.
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limit of potential fluctuations(static limit) and the RA mini-
mum. This maximum occurs for a value of the barrier fluc-
tuation rate on the order of the inverse of the timetupsDd
required to escape from the metastable fixed configuration

tupsDd =
b − L

k − a
−

L

a
+

DseaL/D − 1d
a2s1 − qd

. s39d

This suggests that, the enhancement of stability of metastable
state is strongly correlated with the potential fluctuations,
when the Brownian particle “sees” the barrier of the meta-
stable state[9,14,24].

V. CONCLUSIONS

We have investigated the nonlinear relaxation time for
one-dimensional system with additive white Gaussian noise,
and potential profile switching between two configurations,
due to a Markovian dichotomous noise. From the general
equations(15), we provide exact expression of the mean life-
time for piece-wise linear potential, for arbitrary noise inten-
sity, and arbitrary fluctuation rate of the potential. We find
the noise enhanced stability and the resonant activation phe-
nomena in the system investigated. We obtained analytically
the region on thesq,vd plane, where the NES effect can be
observed. Moreover, when we fix white noise intensityD,
flatnessq, and vary switchings mean raten, we can observe
new resonant-like behavior of the mean lifetime, which is
related to the NES phenomenon. The NLRT shows a maxi-
mum as a function of the mean flipping rate of potential,
with the NES effect strongly correlated with the potential
fluctuations. The general equations derived in this paper en-
able us to perform the analysis of the NES effect conditions
in physical systems with more complex potential profiles.
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APPENDIX: EQUATIONS FOR PROBABILITY DENSITY

Upon differentiation of Eq.(2) on t, we obtain

] W

] t
= −

]

] x
kẋstdd„x − xstd…l. sA1d

Substitutingẋstd from Eq.(1), and using the definition(3) of
auxiliary function, we can rewrite Eq.(A1) as

] W

] t
=

]

] x
fU8sxdWg +

]

] x
fV8sxdQg −

]

] x
kjstdd„x − xstd…l.

sA2d

To obtain the evolution of functionQsx,td, we use the
Shapiro-Loginov’s formula for Markovian dichotomous
noise[29]

d

dt
khstdRtfhgl = − 2nkhstdRtfhgl + khstdṘtfhgl, sA3d

whereRtfhg is an arbitrary functional depending on the his-
tory of random processhstd, 0øtø t. ReplacingRtfhg with
dsx−xstdd in Eq. (A3), using Eq.(1) and taking into account
that h2std=1, we arrive at

] Q

] t
= − 2nQ +

]

] x
fU8sxdQg +

]

] x
fV8sxdWg −

]

] x
kjstdhstddsx

− xstddl. sA4d

To split the functional averages in Eqs.(A2) and(A4), we
use the Furutsu-Novikov’s formula for white Gaussian noise
jstd [30]

kjstdFtfjgl =E
0

t

kjstdjstdlK dFtfjg
djstd Ldt = DK dFtfjg

djstd L ,

sA5d

whereFtfjg is an arbitrary functional ofjstd. Replacing se-
quentially Ftfjg with dsx−xstdd and with hstddsx−xstdd in
Eq. (A5), and taking into account that, in accordance with
Eq. (1), dxstd /djstd=1, we find

kjstddsx − xstddl = − D
] W

] x
,

kjstdhstddsx − xstddl = − D
] Q

] x
. sA6d

Substituting the expressions(A6) in Eqs.(A2) and(A4), we
obtain the desired closed set of Eqs.(4).
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